Линейный резистор. Полупроводниковые резисторы. Смотреть что такое "Линейный резистор" в других словарях

Сопротивление линейных ни от чего не зависит. Сопротивление нелинейных может зависеть от напряжения, температуры, освещенности…
Резистор называют линейным, когда ток в нем изменяется пропорционально приложенному напряжению, т.е. если функция I =f(U) – прямолинейная.

Зависимость тока резистора I от подводимого напряжения U называется его вольтамперной характеристикой (ВАХ). Если сопротивление резистора не зависит от тока, то его ВАХ представляет собой прямую линию (рис. 1а), проходящую через начало координат. Такой резистор называется линейным. Резистор, ВАХ которого не является прямой линией (рис. 1б), называется нелинейным. Электрические цепи, содержащие только линейные элементы, называют линейными. Если в цепи имеется хотя бы один нелинейный элемент, вся цепь называется нелинейной.

15. Делитель напряжения на резисторах при работе вхолостую: нерегулируемые и регулируемые. Расчет выходного напряжения.
Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит из двух и более элементов (резисторов, реактивных сопротивлений).
Делитель напряжения - устройство, в котором входное и выходное напряжение связаны коэффициентом передачи 0 <= a <= 1.

В качестве делителя напряжения обычно применяют регулируемые сопротивления (потенциометры). Можно представить как два участка цепи, называемые плечами, сумма напряжений на которых равна входному напряжению.

Полупроводниковый резистор - это прибор с двумя выводами, электрическое сопротивление которого зависит от управляющих воздействий: напряжения, температуры, освещения и т.д. В полупроводниковых резисторах применяется полупроводниковый материал, равномерно легированный примесями. Тип примеси и конструкция резистора определяют функциональные свойства резистора. Существует следующая классификация полупроводниковых резисторов: линейные резисторы, варисторы, тензорезисторы, фоторезисторы и терморезисторы, в свою очередь разделяющиеся на термисторы и позисторы.

Линейный резистор имеет постоянное сопротивление в широком диапазоне токов и напряжений. Изготавливается из слаболегированного кремния или арсенида галлия. Линейные резисторы обладают более высокой термостойкостью чем обычные, работают на частотах до 100 МГц. Наиболее широко используемые типы полупроводниковых резисторов: МОН, МОУ, С2‑1. Главная область применения линейных полупроводниковых резисторов - интегральные микросхемы.

Варистор - это полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Имеет нелинейную вольтамперную характеристику. Изготавливается из карбида кремния. Основной параметр варистора - коэффициент нелинейности:

где - статическое сопротивление,

Динамическое сопротивление.

Практические значения K нел, находятся в пределах 2–6. Кроме того, варисторы характеризуются следующими параметрами: классификационным напряжением U кл, классификационным током I кл, мощностью рассеивания P max , температурным коэффициентом тока.

На высоких частотах наблюдается гистерезис вольтамперной характеристики, причем с ростом частоты ширина петли гистерезиса увеличивается (рис. 1.6). Промышленность выпускает несколько типов варисторов (СН-1-1, СН-1-2, СН-2-1, СНI-2-2, СН1-3), отличающихся параметрами и конструкцией. Для примера приведем параметры варистора СН1-1: Uкл =560–1500 В; Iкл =10 мА; K нел = 3,5–4,5; P max = l Вт; a =7·10 -3 1/°C.

Варисторы используют для регулирования электрических и механических величин, в стабилизаторах напряжения и тока, в преобразователях частоты, для защиты от перенапряжений и т.п.

Тензорезистор - это полупроводнико­вый резистор, в котором используется связь электрического сопротивления с механической деформацией. Иногда кроме термина "тензорезистор" (тензо - растягивать) самостоятельно применяют термин "пьезорезистор" (пьезо - сжимать). Изготавливается из легиро­ванного кремния p- и n-типа. Основная характеристика - деформационная, представляющая собой зависимость относительного изменения сопротивления DR/R от относительной деформации Dl/l (рис. 1.7). Кроме того, тензорезисторы характеризуются номинальным значением сопротивления R ном = (100-500) Ом и коэффициентом тензочувствительности , значения которого для различных тензорезисторов лежат в пределах от –150 до +150. Конструктивно представляют собой пластинки и пленки. Используются как датчики деформаций, в микрофонах. Следует отметить, что гораздо более высокой чувствительностью к деформациям обладают тензодиоды, у которых коэффициент тензочувствительности достигает нескольких тысяч.


Фоторезистор - полупроводниковый резистор, сопротивление которого зависит от освещенности. Полупроводник, поглощая лучистую энергию, образует дополнительные носители зарядов (фототок). Основная схема включения фоторезистора предполагает наличие источника питания Е и приведена на рис. 1.8. Без освещенности сопротивление фоторезистора велико и через него течет слабый теневой ток, обусловленный наличием в неосвещенном полупроводнике некоторого количества свободных носителей заряда. При освещении фоторезистора ток в цепи существенно возрастает за счет увеличения концентрации зарядов. Ток, вызванный освещением, называется световым током или фототоком.

Энергетическая характеристика фоторезистора показывает зависимость фототока I ф от светового потока Ф. Рис 1.9 показывает, что эта характеристика нелинейна в области больших световых потоков. Вольтамперные характеристики фоторезисторов линейные, однако, при повышенных напряжениях линейность может нарушаться (рис. 1.10). Фототок зависит также от спектрального состава светового потока. Зависимость относительного значения фототока от длины волны излучения при световом потоке определяет спектральную характеристику прибора. Для различных полупроводниковых материалов максимум чувствительности приходится на различные участки спектра. Спектральные свойства фоторезисторов принято характеризовать длиной волны l max , соответствующей максимуму чувствительности, и порогом фотоэффекта, равным длине волны l 0 , при которой чувствительность составляет 1% от максимальной. На рис. 1.11 показана спектральная характеристика фоторезистора из сульфида кадмия.

Фоторезисторы обладают значитель­ной инерционностью, обусловленной вре­менем генерации и рекомбинации электро­нов и дырок, происходящих при изменении освещенности. Время установления стацио­нарного значения фототока называют вре­менем фотоответа. Оно определяет макси­мально допустимую частоту модуляции светового потока. Для большинства фото­резисторов на частоте модуляции света 1 кГц наблюдается существенное уменьшение чувствительности. Фоторезисторы из селени­стого свинца могут работать при частотах по­рядка 10 кГц без заметного снижения чувст­вительности.

Фоторезисторы характеризуются сле­дующими основными параметрами: темновым сопротивлением R (10 2 –10 9 Ом), рабочим напряжением U p (10–100 В), чувст­вительностью к свету S (до 20 А/лм). Все эти параметры существенно зависят от температуры.

Достоинства фоторезисторов: высокая чувствительность, малые габа­риты, возможность включения в цепь постоянного и переменного тока, при­менимость как в видимой, так и в инфракрасной области спектра.

Используются в различных преобразователях в качестве датчиков све­товых потоков.

Терморезистор меняет свое сопротивление в зависимости от темпера­туры. Замеряя его сопротивление можно определить его температуру.

Используется как термометр. У термисторов сопротивление с ростом температуры падает, а у позисторов в рабочем диапазоне - растет. Темпера­турная характеристика для различных терморезисторов различна (рис. 1.12). Для большинства термисторов зависимость сопротивления от температуры выражается аналитически экспонентой:

где K - коэффициент, определяемый конструкцией резистора, b - ко­эффициент, определяемой концентрацией примеси в полупроводнике, Т - температура по Кельвину.

Основным параметром терморезистора является температурный коэф­фициент сопротивления

который выражает процентное изменение сопротивления терморезистора при изменении температуры на 1°С.

Источником температуры может служить как внешняя среда, так и те­пло, выделяемое в самом терморезисторе при прохождении тока. Терморези­сторы в зависимости от способа управления температурой изготавливаются с прямым или косвенным подогревом.

В терморезисторе с прямым подогревом нагрев происходит под влия­нием проходящего через резистор тока. В терморезисторах с косвенным по­догревом используется дополнительная нагревательная обмотка.

Серийно выпускаемые термисторы имеют температурный коэффици­ент сопротивления в пределах от –0,3 до –0,66. Позисторы могут иметь зна­чения температурного коэффициента на крутом участке температурной ха­рактеристики, доходящие до 50.

В электрической цепи терморезистор ведет себя как обыкновенный ре­зистор, но его сопротивление зависит от температуры среды и от величины проходящего тока. Обладает большой тепловой инерционностью. Тепловая инерционность характеризуется постоянной времени t - временем, в тече­ние которого температура изменится на 63% от начальной.

Конструктивно терморезисторы выполняются в виде дисков, шайб, бу­син и стержней.

Терморезисторы характеризуются следующими паспортными парамет­рами: номинальным сопротивлением, температурным коэффициентом сопротивления a, рассеиваемой мощностью P max , постоянной времени t, допустимым диапазоном температур и теплоемкостью С - количеством тепла, которое нужно сообщить резистору, чтобы нагреть его на 1°С.

Терморезисторы изготавливаются из оксидов металлов (меди, марганца, кобальта) и их смеси. Позисторы изготавливаются из титанат-бариевой керамики с примесью редкоземельных элементов. Область применения терморезисторов: измерение и регулирование температуры, термокомпенсация различных элементов электрических цепей, измерение мощности высокочастотных колебаний и лучистой энергии, в качестве регулируемых бесконтактно резисторов.

Полупроводниковые болометры состоят из двух терморезисторов и служат для дистанционного контроля и измерения оптического (инфракрасного) и электромагнитного излучения. Один терморезистор облучается контролируемым излучением и измеряет его мощность, а второй компенсирует влияние температуры окружающей среды.

Датчики Холла , строго говоря, не являются резисторами, но, как и полупроводниковые резисторы используют однородный полупроводниковый материал. Принцип их действия основан на использовании эффекта Холла. Он заключается в том, что если через некоторые полупроводниковые материалы n-типа пропустить ток при воздействии на образец поперечного магнитного поля, то электроны смещаются к боковым граням образца, на которых возникает Э.Д.С. Холла:

где U н - Э.Д.С Холла;

R н - постоянная Холла;

I - ток через образец полупроводника;

B - индукция магнитного поля;

d - толщина образца.

Для изготовления датчиков Холла применяют селенид и телурид ртути, сурьмянистый индий. Конструктивно выполняется в виде пластин и пленок. Имеет большое внутреннее электрическое сопротивление, обладает высокой чувствительностью к магнитному полю в большом диапазоне частот.

Используется в качестве датчиков магнитных полей, особенно в тонких зазорах магнитопроводов электрических аппаратов и машин.

Полупроводниковые резисторы (датчики проникающих излучений) изготовляют на основе пленок из поликристаллических материалов - сульфида кадмия, селенида кадмия и др. - путем возгонки в вакууме и осаждения полупроводниковой пленки на металлическую подложку, которая является одним из выводов. Второй вывод наносится поверх полупроводникового слоя также напылением в вакууме.

Полупроводниковые резисторы характеризуются большим положительным ТК. Температурная зависимость сопротивления обусловлена двумя процессами - генерацией носителей заряда и уменьшением подвижности их с ростом температуры.

Классификация и условное обозначение полупроводниковых резисторов

  • · линейные резисторы;
  • · нелинейные резисторы:
  • · варисторы -- сопротивление зависит от приложенного напряжения;
  • · терморезисторы -- сопротивление зависит от температуры;
  • · фоторезисторы -- сопротивление зависит от освещённости;
  • · тензорезисторы -- сопротивление зависит от деформации резистора;
  • · магниторезисторы -- сопротивление зависит от величины магнитного поля;
  • · Переменный резистор (реостат);
  • · Подстроечный резистор.

Линейный резистор - полупроводниковый прибор, в котором обычно используется слаболегированный кремний или арсенид галлия. Удельное сопротивление такого полупроводника мало зависит от напряжённости электрического поля и плотности электрического тока. Поэтому сопротивление линейного резистора практически постоянно в широком диапазоне изменения напряжений и токов. Линейные резисторы нашли широкое применение в интегральных микросхемах.

Нелинейными называются резисторы, сопротивление которых изменяется в зависимости от значения, приложенного напряжения или протекающего тока. Так, сопротивление осветительной лампы накаливания при отсутствии тока в 10--15 раз меньше, чем при нормальном горении. К нелинейным элементам относятся многие полупроводниковые приборы.

Варистор -- полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольтамперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать свое сопротивление с десятков и (или) тысяч Ом - до единиц Ом при увеличении приложенного к нему напряжения выше пороговой величины. При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов. Один из основных параметров варистора -- коэффициент нелинейности -- определяется отношением его статического сопротивления к динамическому сопротивлению:

где и -- напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора -- отрицательная величина.

Терморезистор -- полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.

Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году.

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например, в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1--10 микрометров до нескольких сантиметров.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • · номинального (при 25 °C) электрического сопротивления;
  • · температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор с гальванически изолированным нагревательным элементом, задающего температуру терморезистора, и, соответственно, его сопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого терморезистора. Температура рассчитывается при помощи уравнения Стейнхарта -- Харта:

Фоторезистор -- полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом. Не имеет p-n перехода, поэтому обладает одинаковой проводимостью независимо от направления протекания тока.

Для изготовления фоторезисторов используют полупроводниковые материалы с шириной запрещенной зоны, оптимальной для решаемой задачи. Так, для регистрации видимого света используются фоторезисторы из селенида и сульфида кадмия, Se. Для регистрации инфракрасного излучения используются Ge (чистый или легированный примесями Au, Cu или Zn), Si, PbS, PbSe, PbTe, InSb, InAs, HgCdTe, часто охлаждаемые до низких температур. Полупроводник наносят в виде тонкого слоя на стеклянную или кварцевую подложку, или вырезают в виде тонкой пластинки из монокристалла. Слой или пластинку полупроводника снабжают двумя электродами и помещают в защитный корпус.

Важнейшие параметры фоторезисторов:

  • · интегральная чувствительность -- отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания);
  • · порог чувствительности -- величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот.

Тензорезисторы -- резистор, сопротивление которого изменяется в зависимости от его деформации. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии -- наоборот.

Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10-3) и для их измерений требуются чувствительные вольтметры, прецизионные усилители или АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее -- в электрический сигнал, обычно сигнал напряжения.

Тензорезисторы используются в качестве первичных преобразователей в тензометрах и тензостанциях при измерениях механических величин (деформации, силы, крутящего момента, перемещения, также, для измерения давления в манометрах и пр.)

Реостат -- электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления. Как правило, состоит из проводящего элемента с устройством регулирования электрического сопротивления. Изменение сопротивления может осуществляться как плавно, так и ступенчато.

Изменением сопротивления цепи, в которую включен реостат, возможно достичь изменения величины тока или напряжения. При необходимости изменения тока или напряжения в небольших пределах реостат включают в цепь параллельно или последовательно. Для получения значений тока и напряжения от нуля до максимального значения применяется потенциометрическое включение реостата, являющего в данном случае регулируемым делителем напряжения.

Использование реостата возможно, как в качестве электроизмерительного прибора, так и прибора в составе электрической или электронной схемы.

Основные типы реостатов

  • 1. Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление.
  • 2. Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с присоединённым к нему контактом слой окалины соскабливается, и электрический ток протекает из проволоки на ползунок. Чем больше витков от одного контакта до другого, тем больше сопротивление. Такие реостаты применяются в учебном процессе. Разновидностью ползункового реостата является агометр , в котором роль ползунка выполняет колёсико из проводящего материала, двигающееся по поверхности диэлектрического барабана с намотанной на него проволокой.
  • 3. Жидкостный реостат, представляющий собой бак с электролитом, в который погружаются металлические пластины. Обеспечивается плавное регулирование. Величина сопротивления реостата пропорциональна расстоянию между пластинами и обратно пропорциональна площади части поверхности пластин, погруженной в электролит.
  • 4. Ламповый реостат. Состоит из набора параллельно включённых ламп накаливания. Изменением количества включённых ламп изменялось сопротивление реостата. Недостатком лампового реостата является зависимость его сопротивления от степени разогрева нитей ламп.

Подстроечный резистор -- переменный резистор, предназначенный для тонкой настройки радиоэлектронного устройства в процессе его монтажа или ремонта. Эти компоненты устанавливаются внутри корпуса устройства и недоступны для пользователя при нормальной эксплуатации.

Резисторы относятся к наиболее широко используемым в электронике элементам. Это название давно вышло из узких рамок терминологии радиолюбителей. И для каждого, кто хоть немного интересуется электроникой, термин не должен вызывать непонимание.

Что такое резистор

Наиболее простое определение выглядит так: резистор – это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова “resisto” – “сопротивляюсь”, радиолюбители эту деталь часто так и называют – сопротивление.

Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.

Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами. Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление. В электротехнике этому давлению соответствует напряжение – затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.

Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.

Свойства резистивных элементов можно использовать в следующих целях:

  • преобразование силы тока в напряжение и наоборот;
  • ограничение протекающего тока с получением его заданной величины;
  • создание делителей напряжения (например, в измерительных приборах);
  • решение других специальных задач (например, уменьшение радиопомех).

Пояснить, что такое резистор и для чего он нужен, можно на следующем примере. Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае – ограничение тока заданным значением.

Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.

Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.

Виды резисторов

Виды резисторов можно разбить на следующие категории:

  1. Нерегулируемые (постоянные) – проволочные, композитные, пленочные, угольные и др.
  2. Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.

Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)

Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:

  1. Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
  2. Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
  3. Рассеиваемая мощность – предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
  4. Температурный коэффициент сопротивления – величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
  5. Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
  6. Шумовая характеристика – степень вносимых резистором искажений в сигнал.
  7. Влагостойкость и термостойкость – максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
  8. Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.


Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды – температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.

Существуют следующие типы полупроводниковых резистивных элементов:

  1. Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
  2. Варистор – элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
  3. Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
  4. Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
  5. Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.


Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.

Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка “зигзаг” с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Мощность может обозначаться полосками на прямоугольнике:

  • 2 Вт – 2 вертикальные черты;
  • 1 Вт – 1 вертикальная черта;
  • 0,5 Вт – 1 продольная линия;
  • 0,25 Вт – одна косая линия;
  • 0,125 Вт – две косые линии.

Допустимо указание мощности на схеме римскими цифрами.

Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.

Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U – для варистора, P – для тензорезистора, t – для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.

Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.

В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.

При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.

Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.

Номиналы

Существуют стандартные значения сопротивлений для резистивных элементов, называемые “номинальным рядом резисторов”. В основу подхода при создании этого ряда положено следующее соображение: шаг между значениями должен перекрывать допустимую величину отклонения (погрешность). Пример – если номинал элемента 100 Ом, а допустимое отклонение 10%, то следующее значение в ряду будет 120 Ом. Такой шаг позволяет избежать лишних значений, поскольку соседние номиналы вместе с разбросом погрешности практически перекрывают весь диапазон значений между ними.

Выпускаемые резисторы объединяются в серии, отличающиеся по допускам. Для каждой серии составлен свой номинальный ряд.

Отличия между сериями:

  • Е 6 – допуск 20%;
  • E 12 – допуск 10%;
  • E 24 – допуск 5% (бывает 2%);
  • Е 48 – допуск 2%;
  • E 96 – допуск 1%;
  • E 192 – допуск 0,5% (бывает 0,25%, 0,1% и ниже).

Самая широко распространенная серия Е 24 включает в себя 24 номинала сопротивлений.

Маркировка

Размер резистивного элемента напрямую связан с его мощностью рассеивания, чем она выше, тем крупнее габариты детали. Если на схемах легко указать любое численное значение, то маркировка изделий бывает затруднена. Тенденция миниатюризации в производстве электроники вызывает необходимость использования элементов все меньших размеров, что повышает сложность как нанесения информации на корпус, так и ее прочтения.

Для облегчения идентификации резисторов в российской промышленности применяют буквенно-цифровую маркировку. Сопротивление обозначается так: цифрами указывают номинал, а букву ставят либо за цифрами (в случае десятичных значений), либо перед ними (для сотен). Если номинал менее 999 Ом, то число наносится без буквы (или могут стоять буквы R либо Е). Если же значение указано в кОм, то за числом ставится буква К, букве М соответствует значение в МОм.

Номиналы американских резисторов обозначаются тремя цифрами. Первые две из них предполагают номинал, третья – количество нулей (десятков), добавляемых к значению.

При роботизированном производстве электронных узлов нанесенные символы нередко оказываются на той стороне детали, которая обращена к плате, это делает прочтение информации невозможным.


Цветовая маркировка

Чтобы информация о параметрах детали оставалась читаемой с любой стороны, применяют цветовую маркировку, краска при этом наносится кольцевыми полосами. Каждому цвету соответствует свое численное значение. Полосы на деталях размещаются ближе к одному из выводов и читаются от него слева направо. Если из-за малого размера детали невозможно сместить цветовую маркировку к одному выводу, то первая полоса делается шириной в 2 раза больше, чем остальные.

Элементы с допустимой погрешностью в 20% обозначают тремя линиями, для погрешности 5-10% используют 4 линии. Самые точные резисторы обозначаются с помощью 5-6 линий, первые 2 из них соответствуют номиналу детали. Если полос 4, то третья говорит о десятичном множителе для первых двух полос, четвертая линия означает точность. Если полос 5, то третья из них – третий знак номинала, четвертая – степень показателя (количество нулей), а пятая – точность. Шестая линия означает температурный коэффициент сопротивления (ТКС).

В случае четырехполосной маркировки последними всегда идут золотая или серебряная полосы.

Все обозначения выглядят сложно, но умение быстро читать маркировку приходит с опытом.

. Удельное сопротивление такого полупроводника мало зависит от напряжённости электрического поля и плотности электрического тока . Поэтому сопротивление линейного резистора практически постоянно в широком диапазоне изменения напряжений и токов. Линейные резисторы нашли широкое применение в интегральных микросхемах .

Литература

  • Основы промышленной электроники : Учебник для вузов/В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков; Под ред. В. Г. Герасимова. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1978.

Wikimedia Foundation . 2010 .

Смотреть что такое "Линейный резистор" в других словарях:

    линейный резистор - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN linear resistor …

    линейный переменный резистор - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN linear pot … Справочник технического переводчика

    ГОСТ 16110-82: Трансформаторы силовые. Термины и определения - Терминология ГОСТ 16110 82: Трансформаторы силовые. Термины и определения оригинал документа: 8.2. Аварийный режим трансформатора Режим работы, при котором напряжение или ток обмотки, или части обмотки таковы, что при достаточной… …

    - (фр. attenuer смягчить, ослабить) устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного… … Википедия

    В статье описаны некоторые типовые применения интегральных операционных усилителей (ОУ) в аналоговой схемотехнике. На рисунках использованы упрощенные схемотехнические обозначения, поэтому следует помнить, что несущественные детали (соединения с… … Википедия

    ГОСТ Р 52002-2003: Электротехника. Термины и определения основных понятий - Терминология ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа: 128 (идеальный электрический) ключ Элемент электрической цепи, электрическое сопротивление которого принимает нулевое либо бесконечно… … Словарь-справочник терминов нормативно-технической документации

    - (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая, троллейбуса и железных дорог. Содержание 1 Принцип действия … Википедия

    Реостатно контакторная система управления (сокр. РКСУ) комплекс электромеханического оборудования, предназначенного для регулирования тока в обмотках тяговых электродвигателей (ТЭД) подвижного состава метрополитена, трамвая и троллейбуса.… … Википедия

    У этого термина существуют и другие значения, см. Стабилизатор. Стабилизатор напряжения преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного… … Википедия